Championship stats & predictions
No football matches found matching your criteria.
Welcome to the Ultimate Guide to the Football Championship Northern Ireland
As a local resident passionate about football, I'm thrilled to bring you the latest on the Football Championship Northern Ireland. This guide is your go-to source for daily updates on fresh matches, expert betting predictions, and in-depth analysis. Whether you're a die-hard fan or a casual observer, this content is crafted to keep you informed and engaged with every thrilling moment of the season.
Stay tuned as we delve into match previews, player highlights, and strategic insights that will enhance your understanding and enjoyment of the game.
Understanding the Championship Structure
The Football Championship Northern Ireland is a fiercely competitive league where clubs battle it out for promotion to the Premiership. Comprising twelve teams, each season is packed with excitement and unpredictability. Let's explore the structure and what makes this league so captivating.
Key Teams to Watch
- Linfield FC: Known for their historical dominance, Linfield remains a formidable force in the league.
- Ballymena United: With a passionate fan base, Ballymena United consistently delivers strong performances.
- Crusaders FC: Based in Belfast, Crusaders are celebrated for their tactical prowess and vibrant atmosphere at Seaview.
- Cliftonville FC: Cliftonville's rich history and dedicated supporters make them a perennial favorite.
Daily Match Updates
Every day brings new action as teams vie for supremacy on the pitch. Here’s what you can expect from our daily updates:
- Match Highlights: Key moments from each game, including goals, red cards, and standout performances.
- Live Scores: Real-time updates to keep you in the loop as matches unfold.
- Post-Match Analysis: Expert commentary on how each game impacts the league standings.
Betting Predictions: Expert Insights
Betting on football can be both thrilling and challenging. Our expert analysts provide daily predictions to help you make informed decisions:
- Predicted Outcomes: Probable winners based on team form, head-to-head records, and current standings.
- Betting Tips: Insider advice on value bets and potential upsets.
- Odds Analysis: Breakdown of bookmaker odds and how they reflect team performances.
In-Depth Player Analysis
Football is as much about individual brilliance as it is about team effort. Here’s a closer look at some key players to watch this season:
- Marcus Lowe (Linfield): A dynamic forward known for his pace and goal-scoring ability.
- Nathan Trott (Cliftonville): A midfield maestro with exceptional vision and passing range.
- Kyle Lafferty (Glentoran): An experienced striker bringing leadership and clinical finishing to the team.
Tactical Insights: How Teams Play
Understanding team tactics can give you an edge in predicting match outcomes. Here’s an overview of how some top teams approach the game:
- Linfield FC: Emphasizes high pressing and quick transitions to catch opponents off guard.
- Crusaders FC: Known for their disciplined defensive structure and efficient counter-attacks.
- Ballymena United: Focuses on possession-based play, aiming to control the tempo of the game.
Upcoming Matches: What to Expect
The schedule is packed with exciting fixtures that promise drama and excitement. Here’s a glimpse of what’s coming up:
- Linfield vs. Glentoran: A classic derby that always draws intense rivalry and passionate support.
- Crusaders vs. Ballymena United: A clash of styles with potential for an enthralling encounter.
- Cliftonville vs. Larne FC: A match that could have significant implications for league standings.
Betting Strategies: Maximizing Your Returns
To make the most of your betting experience, consider these strategies:
- Diversify Your Bets: Spread your bets across different matches to minimize risk.
- Analyze Form Trends: Look at recent performances to identify teams on a winning streak or slump.
- Favor Underdogs Wisely: Sometimes, betting on underdogs can yield high returns if they manage an upset.
The Role of Fans in Shaping Matches
Fans play a crucial role in creating an electrifying atmosphere that can inspire teams to greater heights. Here’s how fan support influences matches:
- Morale Boosters: Cheering crowds can lift team spirits and drive them to perform better.
- Panicked Opponents:wyrichardwang/CS131-FinalProject<|file_sep|>/P1/p1.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.autograd import Variable
from PIL import Image
from utils import *
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--image', default='images/airplane_00000001.png', type=str)
parser.add_argument('--model', default='models/model-35.pth', type=str)
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using device:', device)
# Load pretrained model.
net = VGG16()
net.load_state_dict(torch.load(args.model))
net.to(device)
# Load image.
image = Image.open(args.image).convert('RGB')
image_tensor = transform(image).unsqueeze(0).to(device)
# Forward pass.
outputs = net(image_tensor)
probs = F.softmax(outputs[0], dim=0)
top5_prob, top5_label_idx = torch.topk(probs, k=5)
print('Image:', args.image)
print('Predicted labels:')
for i in range(top5_prob.size(0)):
print('Label %d: %s (%f)' % (top5_label_idx[i], classes[top5_label_idx[i]], top5_prob[i]))
<|repo_name|>wyrichardwang/CS131-FinalProject<|file_sep|>/P1/models.py
import torch.nn as nn
import torch.nn.functional as F
class VGG16(nn.Module):
def __init__(self):
super(VGG16,self).__init__()
self.conv1_1 = nn.Conv2d(3,64,kernel_size=3,stride=1,padding=1)
self.conv1_2 = nn.Conv2d(64,64,kernel_size=3,stride=1,padding=1)
self.conv2_1 = nn.Conv2d(64,128,kernel_size=3,stride=1,padding=1)
self.conv2_2 = nn.Conv2d(128,128,kernel_size=3,stride=1,padding=1)
self.conv3_1 = nn.Conv2d(128,256,kernel_size=3,stride=1,padding=1)
self.conv3_2 = nn.Conv2d(256,256,kernel_size=3,stride=1,padding=1)
self.conv3_3 = nn.Conv2d(256,256,kernel_size=3,stride=1,padding=1)
self.conv4_1 = nn.Conv2d(256,512,kernel_size=3,stride=1,padding=1)
self.conv4_2 = nn.Conv2d(512,512,kernel_size=3,stride=1,padding=1)
self.conv4_3 = nn.Conv2d(512,512,kernel_size=3,stride=1,padding=1)
self.conv5_1 = nn.Conv2d(512,512,kernel_size=3,stride=1,padding=1)
self.conv5_2 = nn.Conv2d(512,512,kernel_size=3,stride=1,padding=1)
self.conv5_3 = nn.Conv2d(512,512,kernel_size=3,stride=1,padding=1)
def forward(self,x):
x = F.relu(self.conv1_1(x))
x = F.relu(self.conv1_2(x))
x = F.max_pool2d(x,kernel_size=(2,2),stride=(2,2))
x = F.relu(self.conv2_1(x))
x = F.relu(self.conv2_2(x))
x = F.max_pool2d(x,kernel_size=(2,2),stride=(2,2))
x = F.relu(self.conv3_1(x))
x = F.relu(self.conv3_2(x))
x = F.relu(self.conv3_3(x))
x = F.max_pool2d(x,kernel_size=(2,2),stride=(2,2))
x = F.relu(self.conv4_1(x))
x = F.relu(self.conv4_2(x))
x = F.relu(self.conv4_3(x))
x = F.max_pool2d(x,kernel_size=(2,2),stride=(2,2))
x = F.relu(self.conv5_1(x))
x = F.relu(self.conv5_3(x))
x = F.relu(self.conv5_3(x))
x = F.max_pool2d(x,kernel_size=(7),stride=(7))
def classifier(self,x):
x=x.view(-1,self.num_flat_features(x)) # Reshape input x into (batch size) x (number of features).
x=F.dropout(F.relu(F.linear(x,self.fc6_w)+self.fc6_b),training=self.training) # Apply dropout regularization.
x=F.dropout(F.relu(F.linear(x,self.fc7_w)+self.fc7_b),training=self.training) # Apply dropout regularization.
x=F.log_softmax(F.linear(x,self.fc8_w)+self.fc8_b,dim=-1) # Apply log softmax.
return x
def num_flat_features(self,x):
size=x.size()[1:] # Get all dimensions except batch dimension.
num_features=torch.prod(torch.tensor(size)) # Compute number of features.
return num_features
if __name__=='__main__':
models={'VGG16':VGG16}
for name,model in models.items():
print(name)<|file_sep|># CS131-FinalProject
Final project of CS131 Spring18 at UC Berkeley.
## P0
We use CIFAR10 dataset (https://www.cs.toronto.edu/~kriz/cifar.html) for our experiments.
### How To Run
Firstly download CIFAR10 dataset.
bash
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar -xvzf cifar-10-python.tar.gz
Then run main.py:
bash
python main.py --dataset_dir path/to/cifar-10-batches-py --save_dir path/to/save/dir --batch_size batch size --epochs num epochs --learning_rate learning rate --gpu_id gpu id(default: -1 means no gpu used)
## P0 Training Curves
### Logistic Regression

### SVM

### MLP

## P0 Results
The results are summarized in Table I.

Table I: Training curves of LR (top left), SVM (top right), MLP (bottom left) trained with different hyperparameters. The horizontal axis denotes training epochs while vertical axis denotes accuracy.
## P0 Experiments
We perform several experiments on CIFAR10 dataset:
### MLP with Different Activation Functions
We train MLP with ReLU activation function and compare it with MLP using tanh activation function.
Training curves are shown below:

It is clear that ReLU performs better than tanh.
### Effectiveness of Dropout Regularization
We train MLP with dropout regularization using different dropout probability values:

It shows that dropout regularization does help improve performance when probability value is not too large or too small.
### Effectiveness of Batch Normalization
We train MLP with batch normalization:

It shows that batch normalization helps improve performance by making convergence faster.
## P0 Discussion
In this project we learn how to use PyTorch framework to implement different machine learning models.
Firstly we implement logistic regression model which performs best among all three models we tried.
Then we implement SVM using SGD optimizer which achieves comparable results with logistic regression model.
Finally we implement multilayer perceptron which achieves best performance among all three models when using appropriate hyperparameters.
## P0 Acknowledgements
The code is based on PyTorch examples found online.<|repo_name|>wyrichardwang/CS131-FinalProject<|file_sep|>/P4/train.py
import torch.optim as optim
from data_loader import load_data
from model import *
from config import Config
import numpy as np
from tqdm import tqdm
config_file='./configs/default.yaml'
config_yml=open(config_file,'r')
config_dict=yaml.load(config_yml)
config_yml.close()
config_obj=config_dict['Config']
config_obj=config_obj(**config_dict['Config'])
train_data,val_data,test_data,criterion=train_data,val_data,test_data,criterion=config_obj.data_loader()
model=config_obj.model()
optimizer=config_obj.optimizer(model.parameters())
scheduler=config_obj.scheduler(optimizer)
train(train_data,model,criterion,scheduler)
evaluate(val_data,model,criterion)
evaluate(test_data,model,criterion)
torch.save(model.state_dict(),'model.pt')<|file_sep|># CS131-FinalProject
Final project of CS131 Spring18 at UC Berkeley.
## P4 Results
The results are summarized in Table II.

Table II: Evaluation results on STL-10 test set using different models trained with our algorithm.
## P4 Acknowledgements
The code is based on PyTorch examples found online.<|file_sep|>#include "caffe/layers/deformable_psroi_pooling_layer.hpp"
namespace caffe {
template
void DeformablePSROIPoolingLayer ::LayerSetUp(const vector *>& bottom, const vector *>& top) { LOG(INFO) << "PSROI Pooling Layer Setup"; const DeformablePSROIPoolingParameter& deformable_psroi_pooling_param = this->layer_param_.deformable_psroi_pooling_param(); pooling_method_=deformable_psroi_pooling_param.pooling_method(); group_size_=deformable_psroi_pooling_param.group_size(); trans_std_=deformable_psroi_pooling_param.trans_std(); num_roi_per_img_=deformable_psroi_pooling_param.num_roi_per_img(); bottom_shape_=bottom[0]->shape(); top_shape_=top[0]->shape(); assert(bottom_shape_[0]==top_shape_[0]); //batch size should be same between bottom[0] & top[0] assert(bottom_shape_[num_spatial_axes+num_channels_axis]==top_shape_[num_spatial_axes+num_channels_axis]); //channel should be same between bottom[0] & top[0] height_=bottom_shape_[num_spatial_axes+channel_axis]; width_=bottom_shape_[num_spatial_axes+spatial_axis]; num_rois_=bottom[1]->count()/5; assert(num_rois_*5==bottom[1]->count()); output_dim_per_channel_=group_size_*group_size_; output_dim_per_roi_=top_shape_[num_spatial_axes+channel_axis]*output_dim_per_channel_; pooled_height_=top_shape_[num_spatial_axes+spatial_axis]; pooled_width_=top_shape_[num_spatial_axes+spatial_axis]; LOG(INFO) << "Bottom shape:" << bottom_shape_; LOG(INFO) << "Top shape:" << top_shape_; LOG(INFO) << "Num ROI:" << num_rois_; LOG(INFO) << "Height:" << height_; LOG(INFO) << "Width:" << width_; LOG(INFO) << "Output dim per channel:" << output_dim_per_channel_; LOG(INFO) << "Output dim per roi:" << output_dim_per_roi_; LOG(INFO) << "Pooled height:" << pooled_height_; LOG(INFO) << "Pooled width:" << pooled_width_; } template void DeformablePSROIPoolingLayer ::Reshape(const vector *>& bottom, const vector *>& top){ top[0]->ReshapeLike(*bottom[0]); top[1]->ReshapeLike(*bottom[0]); } template void DeformablePSROIPoolingLayer ::Forward_cpu(const vector *>& bottom, const vector *>& top){ const Dtype* bottom_data_ptr=NULL; const Dtype* bottom_trans_ptr=NULL; Dtype* top_data_ptr=NULL; Dtype* top_trans_ptr=NULL; bottom_data_ptr=blob_bottom_data_cpu_.mutable_cpu_data(); bottom_trans_ptr=blob_bottom_trans_cpu_.mutable_cpu_data(); top_data_ptr=blob_top_data_cpu_.mutable_cpu_data(); top_trans_ptr=blob_top_trans_cpu_.mutable_cpu_data(); int